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ABSTRACT 

A polyhedral map on the torus is diminimM if either shrinking or removing an 

edge yields a nonpolyhedral map. We show that all such maps on the torus 

fall into one of two classes, type 2 and type 3, and show that there are exactly 

two type 3 ones, which are given explicitly. 

1. I n t r o d u c t i o n  

A polyhedral map on a surface is called d imin imal  if either shrinking or remov- 

ing an edge yields a nonpolyhedral map. Steinitz determined that the tetrahe- 

dron is the only diminimal map on the sphere, and used this result to establish 

his famous autonymous theorem [6]. More recently these maps have been studied 

by D.W. Barnette, who determined the seven diminimal maps on the projective 

plane [2], and by the author, who determined the one diminimal map on the 

pinched torus [4] (also known as the pinched sphere and the spindle surface). 

The natural next stage of the investigation is to find the diminimal maps 

on the torus. A complete solution to this problem seems to be far off at this 

point, although some progress is being made. In this paper, we show that all 

diminimal maps on the torus are partitioned into two types, called type 2 and 

type 3. We also classify all type 3 diminimal toroidal maps, of which there are 

two. Regarding the type 2 diminimal maps, it is known [5] that there are finitely 

many, but not much besides. The author knows of over 20 such maps, and there 

are probably many more than that. See [5] for results and conjectures concerning 

the type 2 diminimal toroidal maps. 
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2 .  D e f i n i t i o n s  

In this paper, graphs have no loops, multiple edges, or vertices of degree less 

than 3. A map  is a 2-eel1 embedding of such a graph into a surface M. The 

faces of the map are the connected components of M - G. Note that we often 

purposely confuse faces with their bounding circuits. As an example of this, we 

define a po lyhedra l  map to be one with the property that two faces meet, if at 

all, on a vertex or an edge only. Two faces which meet in such a way are said to 

meet properly.  

The edge between vertices x and y is denoted zy. Shr inking edge xy means 

contracting it to a vertex and coalescing any created multiple edges, whereas 

removing  edge xy means clipping it out of the graph and coalescing any created 

2-valent vertices into the edges in which they lie. Note that these two operations 

are dual. The inverse operations are called ver tex spl i t t ing and face spl i t t ing 

respectively. An edge is called shrinkable or removable resp. if shrinking or 

removing it yields a polyhedral map. A polyhedral map with no shrinkable or 

removable edges is called diminimal.  

An obstacle to the shrinking of an edge is a pair of faces which meet improp- 

erly after the edge is shrunk, whereas an obstacle to the removal of an edge f 

is a face which improperly meets the new face created upon the removal of edge 

f .  A cellular subcomplex  of a map is a set of faces whose union is homeo- 

morphic to a disc. A 3-chain is a set of three faces of the map in which each 

intersects the other two. If the three faces have a vertex in common, the 3-chain 

is said to be trivial. A 3-chain is called p lanar  if it is contained in some cellular 

subcomplex. An obstacle {A, B} to the shrinking of edge f is called p lanar  if 

A U B tJ {f} lies in a cellular subcomplex. Similarly, an obstacle A to the removal 

of an edge f is called p lanar  if A along with the two faces containing f lie in 

a cellular subcomplex of the map. If an edge has a planar obstacle to removing 

(shrinking) it, it is called meta removable  (metashr inkable)  for reasons that 

will be made clear below. 

We often abbreviate the phrase "disjoint homotopic nonplanar" by d h n  as in 

"dim circuits". An annula r  decomposi t ion of a polyhedral map on the torns 

is a set of two or more dim circuits in the map. An annular decomposition is 

called finest if it is maximal among all such decompositions with respect to the 

number of dhn circuits it contains. A polyhedral map on the toms is said to be 

o f  t y p e  k if it has k tlhn circuits in a finest amaular decomposition. Finally, a 
W~ circuit  in a polyhedral map is a simple circuit whose intersection with each 

face is connected. 
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3. Preliminary L e m m a s  

We will need the following Lemmas of the author [4]: 

LEMMA 1: Let F and G be the two faces contaJnlng edge zll in a polyhedral 

map M on some surface S. If M is not the tetrahedron and M is minimal with 

respect to the shrinking of edges, then a pair of faces A and B form an obstacle 

to the shrinking of edge z!t iff z is in one of A, B; !1 is in the other, and both 

A, B, and F, and A, B, and G form nontrivial 3-chains. 

LEMMA 2: In a nontetrahedral map m/nimal with respect to edge removal, a 

face F is an obstacle to the removal of edge e if[ F lies in a nontrivial 3-chain 

with the two faces containing e. 

And the following lemmas and theorem of Barnette's ([21, [11, and [31, resp.), the 
first of which is restated slightly to harmonize with our terminology: 

LEMMA 3: A diminimal polyhedral map has no planar obstacles. 

THEOREM 1: Every polyhedrM map on the torus has a nonplanar Wv circuit. 

LEblblA 4: The dual of a polyhedral map on a torus is polyhedral. 

Note that  in [2], Lemma 3 is proved for diminimal maps on the projective plane, 

but that  the topology of that  surface is used nowhere in the proof. 

LEMMA 5: There are no type 1 polyhedral maps on the toms. 

Proof: Let M be a type k polyhedral map on the torus. By Theorem 1 and 

Lemma 4, its dual has a nonplanar W~ circuit C. As is proved in [1], the 

boundary of the set of faces of M corresponding to the vertices of a Wv circuit 

consists of two dhn circuits, so that  k > 2. v 

LEMMA 6: Every d/minimal map on the toms is of type 2 or type 3. 

Proof: Due to Lemma 5, we need only show that no diminimal map on the toms 

is of type k for k > 4. Suppose there is such a map M. Then M has at least four 

dhn circuits in some annular decomposition. Let xy be an edge on one of the 

circuits (see Fig. 1), and let F and G be the two faces containing zy. Note that  

it is irrelevant whether F f3 B = ~ or not, and likewise for G N D (see figure). 

Let H be an obstacle to the removal of zy. Then due to Lemmas 2 and 3, H 

must lie in annulus B C  or CD, and must lie in a nontrivial, nonplanar 3-chain 
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with F and G. Thus without loss of generality we may assume H lies in annulus 

BC, and thus has H N G C C (Fig. 2). In this configuration, however, any 

obstacle to the shrinking of edge xy will cause two faces to meet improperly. 
[] 

A B C D A 

Fig. 1. 

A B C D A 
Fig. 2. 

4. The main result 

In this section, we prove some results specifically relating to type 3 diminimal 

maps on the toms, and use these to prove the main theorem, which consists 

of the enumeration and determination of the two such maps. Note that unless 

explicitly stated otherwise, all lemmas, theorems, and remarks in this section 

refer to type 3 diminimal maps on the toms. 
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LEMMA 7: Any path across one of the three annuli formed by the dhn circuits 

must consist of a single edge. 

Proof: Suppose there is a path of length > 2 across one of the annuli. Thus there 

is an edge zy lying in the interior of one of the annuli which has one of its two 

incident vertices in the interior of the annulus (Fig. 3). Thus, due to Lemmas 

2 and 3, any obstacle to the removal of zy must lie entirely within the annulus 

as well (Fig. 4). In this configuration, however, any obstacle to the shrinking of 

edge zy would force two faces to meet improperly, n 

x - - - - - - - - - - 4  y 

Fig. 3. 

Fig. 4. 

We say that two disjoint paths P and Q across an annulus axe consecut ive  
if one of the two cellular regions into which they divide the annulus contains no 

paths across the annulus which axe disjoint from P or disjoint from Q. Any such 

region is called a can ton  bounded by P and Q. 

LEMMA 8: A canton must be a face of the map. 

Proof: Due to the annulus on either side, any edges within a canton would either 

be removable or metaremovable, ta 
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THEOREM 2: There can be no more than three disjoint edges across an annu/us. 

Proof." Assume there are four or more such edges across an annulus, and let 

four of them be labelled xlx2 for z = a,b,c,d, such that ala2 and b l ~  are 

consecutive, etc. By Lemma 8, the regions between consecutive edges are faces, 

and so we call the face between ala2 and bib2 A, etc. Note that there may be 

more than one face between did2 and ala2 because, if there are more than four 

edges across the annulus, those are not consecutive. Finally, let the two annuli 

not under consideration be labelled I and II (Fig. 5). Now, any obstacle F to 

the removal of edge 51/~ must lie completely in I or completely in II. Without 

loss of generality, we may assume F lies in II. By Lemmas 2 and 3, F must lie 

in a nontrivial, nonplanar 3-chain with faces A and B, and there is essentially 

only one way in which this can occur (Fig. 6). 

a 1 q,= 

b l  ~,= 

c 1 

d l ~  

• • a 2 

A 

;b 2 
B 

; c 2 
C 

.~d 2 
D 

II 

Fig. 5. 

Furthermore, any obstacle G to the removal of edge clc2 must lie in a non- 

planar, nontrivial 3-chain with faces B and C. Note that it is impossible for F 

to be an obstacle to the removal of clc2, for if it were, it would lie in a planar 

nontrivial 3-chain with B and C, contradicting Lemma 3. Note further that if 

G lay in annulus II, it would be forced to lie in the cellular region determined by 

F within that annulus. Therefore G must lie in annulus I and make a nontrivial 

nonplanar 3-chain with faces B and C (Fig. 7). However, by similar arguments, 

dl, d2 is metaremovable, in contradiction to Lemma 3. v 
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Fig. 6. 

Fig. 7. 
Note that polyhedrality, along with Lemma 8, implies that a type 3 diminimal 

map on the torus has at least 3 edges across each annulus, so we have: 

COROLLARY 1 : A type 3 diminimd map on the torus has exactly nine faces, 
three in each annulus. 

By duality, we have 
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COROLLARY 2: A type 3 diminimal map on the toms has exactly 9 vertices, 3 

on each dhn circuit. 

And thus 

COROLLARY 3: Every type 3 diminimal map on the torus has nine 4-sided faces 

and nine 4-valent vertices. 

COROLLARY 4: There are exactly two type 3 dirninimal maps on the toms, 

shown in Figure 8. 

h dh 

Fig. 8. 

Note that these two maps are traditionally known as the triangular picture frame 

and the twisted triangular picture frame. 
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